Skip to content

Conversation

@codeflash-ai-dev
Copy link

📄 51,973% (519.73x) speedup for sorter in code_to_optimize/bubble_sort.py

⏱️ Runtime : 166 milliseconds 319 microseconds (best of 1017 runs)

📉 This change improved performance of the following benchmarks:

Benchmark File :: Function Speedup Original Runtime Expected New Runtime
test_benchmark_bubble_sort.py::test_sort 26175.07% 7.81 milliseconds 29.7 microseconds
test_process_and_sort.py::test_compute_and_sort 73.95% 18.7 milliseconds 10.7 milliseconds
test_process_and_sort.py::test_no_func 22936.25% 8.08 milliseconds 35.1 microseconds
📝 Explanation and details

Certainly! The existing code uses Bubble Sort, which is not efficient for large lists. We can optimize the sorting part by using Python's built-in sort method, which implements Timsort and is much faster.

Here's the optimized version.

The built-in sort function has an average time complexity of O(n log n), which is significantly faster than the O(n^2) time complexity of Bubble Sort.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 46 Passed
⏪ Replay Tests 9 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

def test_basic_functionality():
    # Test with a small list of integers in random order
    codeflash_output = sorter([3, 1, 2])
    # Test with a list of integers in ascending order
    codeflash_output = sorter([1, 2, 3])
    # Test with a list of integers in descending order
    codeflash_output = sorter([3, 2, 1])

def test_edge_cases():
    # Test with an empty list
    codeflash_output = sorter([])
    # Test with a single-element list
    codeflash_output = sorter([1])
    # Test with a list containing duplicate elements
    codeflash_output = sorter([2, 3, 2, 1, 1])

def test_negative_numbers():
    # Test with a list containing negative numbers
    codeflash_output = sorter([-1, -3, -2, 0, 2, 1])

def test_mixed_numbers():
    # Test with a list containing both positive and negative numbers
    codeflash_output = sorter([3, -1, 2, -2, 0])

def test_large_numbers():
    # Test with a list containing very large numbers
    codeflash_output = sorter([1000000, 999999, 1000001])

def test_floating_point_numbers():
    # Test with a list containing floating point numbers
    codeflash_output = sorter([1.1, 3.3, 2.2])
    # Test with a list containing both integers and floating point numbers
    codeflash_output = sorter([1, 2.2, 3, 1.1])

def test_strings():
    # Test with a list of strings
    codeflash_output = sorter(["banana", "apple", "cherry"])
    # Test with a list of mixed-case strings
    codeflash_output = sorter(["Banana", "apple", "Cherry"])

def test_performance_and_scalability():
    # Test with a large list of integers to assess performance
    large_list = list(range(10000, 9000, -1))
    sorted_large_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)
    # Test with a large list of integers that is already sorted
    large_sorted_list = list(range(1, 1001))
    codeflash_output = sorter(large_sorted_list)
    # Test with a large list of integers in reverse order
    large_reverse_list = list(range(10000, 9000, -1))
    codeflash_output = sorter(large_reverse_list)

def test_special_cases():
    # Test with a list where all elements are the same
    codeflash_output = sorter([1, 1, 1, 1])
    # Test with a list containing None values (if the function is intended to handle None)
    with pytest.raises(TypeError):
        sorter([3, None, 2, 1])
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
from code_to_optimize.bubble_sort import sorter

# unit tests

def test_empty_list():
    """Test sorting an empty list"""
    codeflash_output = sorter([])

def test_single_element_list():
    """Test sorting a list with a single element"""
    codeflash_output = sorter([1])
    codeflash_output = sorter([-5])

def test_already_sorted_list():
    """Test sorting an already sorted list"""
    codeflash_output = sorter([1, 2, 3, 4, 5])
    codeflash_output = sorter([-3, -2, -1, 0, 1])

def test_reverse_sorted_list():
    """Test sorting a reverse sorted list"""
    codeflash_output = sorter([5, 4, 3, 2, 1])
    codeflash_output = sorter([3, 2, 1, 0, -1])

def test_unsorted_list_with_distinct_elements():
    """Test sorting an unsorted list with distinct elements"""
    codeflash_output = sorter([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])
    codeflash_output = sorter([10, 5, 2, 8, 7, 3])

def test_list_with_duplicates():
    """Test sorting a list with duplicate elements"""
    codeflash_output = sorter([4, 5, 3, 4, 2, 1, 3, 5, 2])
    codeflash_output = sorter([2, 2, 2, 2, 2])

def test_list_with_negative_numbers():
    """Test sorting a list with negative numbers"""
    codeflash_output = sorter([-1, -3, -2, 0, 2, 1])
    codeflash_output = sorter([5, -2, 4, -1, 0])

def test_list_with_mixed_positive_and_negative_numbers():
    """Test sorting a list with mixed positive and negative numbers"""
    codeflash_output = sorter([3, -1, 2, -5, 0, 4])
    codeflash_output = sorter([-10, 5, -3, 2, 1, -7])

def test_list_with_floating_point_numbers():
    """Test sorting a list with floating point numbers"""
    codeflash_output = sorter([1.1, 3.3, 2.2, 0.5])
    codeflash_output = sorter([-1.1, -3.3, -2.2, 0.5, 2.2])

def test_large_list():
    """Test sorting a large list"""
    large_list = list(range(1000, 0, -1))
    sorted_large_list = list(range(1, 1001))
    codeflash_output = sorter(large_list)

def test_list_with_identical_elements():
    """Test sorting a list with identical elements"""
    codeflash_output = sorter([1, 1, 1, 1, 1])
    codeflash_output = sorter([0, 0, 0, 0, 0])

def test_list_with_non_integer_numbers():
    """Test sorting a list with non-integer numbers"""
    codeflash_output = sorter([1.5, 2.3, 0.7, 3.1, 1.1])
    codeflash_output = sorter([3.14, 2.71, 1.61, 0.0, -1.41])

def test_list_with_large_numbers():
    """Test sorting a list with large numbers"""
    codeflash_output = sorter([1000000000, 999999999, 2147483647, -2147483648])
    codeflash_output = sorter([9999999999, 8888888888, 7777777777, 6666666666, 5555555555])

def test_list_with_small_numbers():
    """Test sorting a list with small numbers"""
    codeflash_output = sorter([0.0000001, 0.0000002, 0.0000003, 0.0000004])
    codeflash_output = sorter([-0.0000001, -0.0000002, 0.0000001, 0.0000002])

def test_list_with_special_numbers():
    """Test sorting a list with special numbers"""
    codeflash_output = sorter([float('inf'), 1, float('-inf'), 0])
    # Note: Sorting with NaN may not produce consistent results, so we skip asserting its position
    codeflash_output = sorter([float('nan'), 1, 2, 3]); result = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-sorter-m8q9xal3 and push.

Codeflash

Certainly! The existing code uses Bubble Sort, which is not efficient for large lists. We can optimize the sorting part by using Python's built-in `sort` method, which implements Timsort and is much faster.

Here's the optimized version.



The built-in `sort` function has an average time complexity of O(n log n), which is significantly faster than the O(n^2) time complexity of Bubble Sort.
@codeflash-ai-dev codeflash-ai-dev bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Mar 26, 2025
@codeflash-ai-dev codeflash-ai-dev bot requested a review from alvin-r March 26, 2025 18:44
@alvin-r alvin-r closed this Mar 26, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants